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Abstract

The problem of a steady forced convection thermal boundary-layer past a flat plate with a prescribed surface heat flux propor-
tional to (1 -+ x?)" (m a constant) is investigated both analytically and numerically. In view of the present formulation, the governing
equations reduce to the well-known Blasius similarity equation and to the full boundary-layer energy equation with two parameters:
the wall flux exponent m and Prandil number Pr. The range of existence of solutions is considered, it being shown that solutions for
both x small and x large exist only for m > —1/2. However, for m < — 1/2 the asymptotic structure for x large is found to be dif-
ferent for m < —1/2 and m = —1/2. respectively. These asymptotic solutions for large x are derived and compared with numerical
solutions of the full boundary-layer equation. A very good agreement between these asymptotic solutions and numerical simulations
are found in the range of Prandtl numbers considered. © 1998 Elsevier Science Inc. All rights reserved.
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Notation 1. Introduction
C constant defined in Eq. (22) Historically, the theoretical description of the thermal
f reduced stream function boundary-layer flow began with the analysis of Prandtl
F Gauss function (1910) (see Tani, 1977), who applied the boundary-layer con-
g.8,G.h  reduced temperature functions cept to the heat transfer problems. The work of Prandt] was
I dummy function defined in Eq. (25) especially noteworthy as it first introduced the mathematical
m wall heat flux exponent defined in Eq. (1) technique of boundary-layer theory into the subject of heat
Pr Prandt! number transfer. Subsequently, Pohlhausen (1921) identified similarity
P function defined in Eq. (40) solutions for the heat transfer part of the forced convection
X,y Cartesian coordinates along and normal to the flow past a flat plate by introducing the dimensionless similar-
plate, respectively ity profile for the boundary-layer energy equation. Pohlhau-
sen’s analysis has been very much refined and generalized
Greek since then. Among different methods, we mention that of scal-
r Gamma function ing analysis pmpo.se.d by Bejan (1985), which is a very efficient
5 Kronecker delta function defined in Eq. (42) approach to obtaining useful engineering results. There have
0 non-dimensional temperature been very many advances made along the lines of thermal
0y non-dimensional wall temperature boundary- layer theory. and the most important of these are
En non-similarity variables extensively reviewed in Kakag et al. (1987), Gebhart et al.
v alternative unit-step function defined in Eq. (41) (1988). and very regently by Bejan (1.995)' .
W non-dimensional stream function It is well-established that convective heat transfer depends
on the form of the thermal boundary conditions imposed, with
Superscripts it being usual to take either a prescribed temperature or a pre-

! differentiation with respect to 5
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scribed heat flux on the boundary surface. However, in many
problems, particularly those involving the cooling of electrical
and nuclear components, the wall heat flux is known. In such
problems, overheating, burnout, and meltdown are very im-
portant issues; therefore, one of the objects of heat transfer
theory is the prediction of the wall temperature as wall heat
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flux varies. The design objective is to control this wall temper-
ature distribution (Bejan, 1995). However, the situation of a
prescribed heat flux rate at a surface is often approximated in
practical applications and is easier to measure in a laboratory
than the case of a surface with prescribed wall temperature.
The main objective of this paper is to complete the existing
solutions in the open literature of the forced convection ther-
mal boundary-layer on a flat plate by considering the case
when a prescribed wall heat flux is given and is of the form

60 4 2\m
had - 2 1
(Qv)vz(. (145", (1

where x and y are the non-dimensional Cartesian coordinates
along and normal to the plate, respectively,  is the non-dimen-
sional temperature and m is a constant. To the authors’ best
knowledge this situation has not been treated previously for
the flow geometry considered in this paper. However the anal-
ogous problem of free convection boundary-layer flow on a
vertical plate immersed in a viscous (Newtonian) fluid with
the prescribed wall heat flux given by Eq. (1) has been discus-
sed in detail first by Merkin and Mahmood (1990), and more
recently by Wright et al. (1996) for a vertical flat plate embed-
ded in a fluid-saturated porous medium. In what follows, we
make use of the elegant work of Merkin and Mahmood
(1990) to complete the solution of the present classical problem
with the case given by Eq. (1) and to compare the nature of the
solution with the corresponding results for the prescribed uni-
form wall heat flux case. It was shown that we must have
m > —1/2 for a solution of the energy equation to exist. How-
ever, we found that this equation has a physically acceptable
asymptotic solution for x large when m < — 1/2, as well. The
behaviour of this asymptotic solution for m< — 1/2 is fully
discussed. Finally, we compare the analytical solutions for var-
ious values of the parameter m and Prandtl number Pr with the
results obtained using numerical techniques. The numerical re-
sults confirm the heat transfer features anticipated by the as-
ymptotic solutions.

It is worth mentioning to this end that the precise form that
the surface heat flux takes is not important, only that it has the
functional forms for x small and x large given by Eq. (1).

2. Basic equations

Consider the laminar forced convection boundary-layer
flow of a viscous incompressible fluid past a flat plate with a
uniform free stream velocity U,, and constant temperature
T... The boundary-layer equations in terms of the stream func-
tion y and temperature € can be written in non-dimensional
form as

Wy oy 0w -
Sy xdy  ox oy 3 )
9!!{_@2_%00_ 1 8% (3)

dvdx  wdy Proy?’
where Pr is the Prandtl number. Egs. (2) and (3) are subject to
the boundary conditions

a‘// a() 2 \m
:0: :——-:0 _— — l =
v V=20 P UL
Vv — oo %—»1, 6 — 0, (4)

where m is a real constant. From Eq. (4) we see that for
x < 1, (00/3y),_, = —1, while, for x > 1, (80/dy} _, = —x*,
so that though it is possible to write down similarity equations
for both x small and x large, in the latter case these possess a

solution only if we take m > —1/2.

To facilitate the analysis of Eqs. (2)-(4) we follow Merkin
and Mahmood (1990), and introduce the variables

Y=xfn), 0=x" (14 xX)"glxen). 7=y (5)
Substituting these variables into Egs. (2) and (3) we get
"+ =0, (6)

1 &g | Og 1 1 [ Sl 408
Prop 2 oy T3 {2* (z am x| fe=xf50 ()
along with the boundary conditions

. dg

0)=roy=0, =% _—

J10) =/(0)=0, o (x,0) I

foo) =1, glx,o0) =0, (8)

where primes denote differentiation with respect to 7.
Similarity solutions of Eq. (7) are possible for x = 0, and
they are given by

gy +3Prfeg, — iPrf'gy =0, (9)
g,(0) = =1, gy(o0) =0, (10}

which correspond to the thermal boundary-layer on a flat plate
with a prescribed uniform heat flux, see Bejan (1995), p. 80. On
the other hand, on letting x — oo in Eq. (7), we get

1 1
gl +5Prjg - (5 + Zm) Prf'g =0, (1)
£1(0)= -1 gifoc)=0. (12)
These equations correspond to a prescribed wall heat flux
(D0/0v),_, = —x* (see Sparrow and Lin, 1965, for m = 0).

By integrating Eq. (11) and using the boundary conditions
(8) for /" and (12) for g, we obtain

(1+2m) /.f"g| dy=Pr. (13)

0

Hence, we must have
m>—1/2 (14)

for a solution of Eq. (7) to exist for both x small and x large.
However, there are two separate cases to consider for the pres-
ent problem for large x, namely, m < —1/2 and m = —1/2,
respectively.

Eqgs. (6) and (7) have been solved using a standard Keller
box method (Keller, 1971) and with the solution of Eqs. (9)
and (10) used as the initial condition for g(x, ) at x = 0. The
results are shown in Table 1 giving the wall temperature distri-
bution 0(x,0) = 0,(x) for different values of the parameter m

Table 1
Values of g(x.0) obtained from Eq. (7)
Pr g(x.0)
m=0 m=-1/4
0.001 9.85265 9.95016
0.01 8.7474% 9.52395
0.1 4.93984 6.79432
1 2.17879 3.01153
10 1.00212 1.37336
100 0.46469 0.63620
1000 0.21567 0.29524
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and Prandtl number Pr. The wall temperature distribution for
large x is given by

O (x) = g(x, 00x' (1 +27)" + O( (1 +2%)"). (15)

The variation of the wall temperature 0,,(x) is shown in
Fig. 1 for Pr= 1. It can be seen from this figure that the nu-
merical solution attains its asymptotic condition as given by
Eq. (15) for the case m = — 1, which corresponds to a uniform
wall temperature for large x

3. Asymptotic solution for x large when m < —1/2

To find an asymptotic solution of Eq. (7), which is valid for
x large when m < —1/2, we make the transformation

W=x'2f(n), 0=x"Glx,n). n=y/x'" (16)
which is the one that gives Eq. (11) for the critical case
m=~1/2.

Using transformation (16), Eq. (3) and boundary condi-
tions (4) become

1 02G oG 1

— —f—=+=fG b 17
Pr (‘);1 / Zf / (')r (17)
subject to the boundary conditions

o R l m

dﬁ( 0) = —x 1‘”’(1—#— ) . Gx.00) =0. (18)
an

We look for a solution of Eq. (17) subject to the boundary
conditions (18) by expanding G in powers of x'*™
(1 4+ 2m < 0), of the form

G(x.n) = Go(n) + x"2"Gy () + O(x ™' 7). (19)
where G, satisfies the equation
Gy, +1PrfGy = 0. (20)

Eq. (20) has been obtained by integrating the equation de-
rived from (17) once, with boundary conditions (8) for / and
(21) for G satisfied. The required solution to the homogeneous
problem given by Eq. (20) and boundary condition (21) can be
found from a particular solution Gy(#) by the transformation
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Fig. 1. Graph of 0,(x) calculated from the numerical solution of
Eq. (7) (full line) and from Eq. (15) (broken line) for m = —1/4 and
Pr=1.

Goln) = CGo(n), (22)
where the solution Gy(#) is such that Gy(0) = 1.

To determine the value of the constant C, we integrate
Eq. (3) and apply boundary conditions (4) to get

z x 13_ 5
/ df—w/ ds = Pr (—n§5.7x>

:ﬁl(_m\§> Lr|+2171

2Pr IM(—m) Pr’

+ 0" asx — oo, (23)
where I'(z) and F(a, b;c;z) are the Gamma function and the
Gauss function respectively (Spanier and Oldham, 1987).

So that for the leading-order solution in expansion (19),
Eq. (23) gives, using Eq. (22),

T . _\/ﬁf(wm—%) N
¢ / R T 24
0
Introducing the integral
n
() = /Gof’ dn. (25)
"o
the leading-order solution can be written as
Valr(—-m—1) )
G(n) = Pl mo oln). (26)

Now the full numerical solution of Gy(n) can be determined
from the basic variables (G, /), which satisfy the following
equations,

Gy +1PrfGy = 0. (27)
I'=Gyf' (28)
subject to the boundary conditions

G0y =1, 1(0)=0. (29)

Table 2 lists the values of /(oc) for different Prandt! number
Pr. The wall temperature distribution for large x and m < —1/2
can then be expressed as

_ ﬁf( —m— %)
Ov(x) = P (—m)l (o)

A graph of asymptotic expression (30) is shown in Fig. 2
for Pr = 1 where we can see that it is in very good agreement
with the value obtained from the numerical solution of Eq. (7).
In the paper by Merkin and Mahmood (1990), the case of
m = —1 was treated as an exception due to existence of eigen-
solutions. No such eigensolution appears in our case because
the momentum equation (Blasius equation) is decoupled from
the energy equation.

12 + O(xl/?_ﬁ .7_m)~ (30)

Table 2

Values of /(co) obtained from Eq. (28)

Pr HES)
0.001 56.03064
0.01 17.66650
0.1 5.45053
1 1.50576
10 0.34919

100 0.07596
1000 0.01638
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Fig. 2. Graph of 0,(x) calculated from the numerical solution of

Eq. (7) (full line) and from Eq. (30) (broken line) for m = -1 and
Pr=1.

4. Asymptotic solution for x large when m = —1/2

It is clear from Eq. (19) that the expansion of G in powers
of x"*2" for m < —1/2 breaks down when m = —1/2 and an al-
ternative approach is required. In this case relation (5) is re-
placed by

g=x"210). 0=x lnxh(x.m). g =y/x' (31)
so that Eq. (23) reduces to

x

/ ()%dﬁv:lln (x+ Vx4 l)
J oy Pr
0
I 1 )
:ﬁlnx+ﬁln2+0(.\"‘) asx — oG (32)

Using Eq. (31), Eq. (3) can now be transformed into the
following form,

1*h 1 o (11 Oh
—_ —_— Th— x— 33
Praw‘%2f0q+’(2 mx>f ' (33)

subject to the boundary conditions

/2

Oh 1 e
— == — — . U, C = u. 3
o (x,0) i~ (1 +x3) . hx.oc) =0 (34)

We now look for a solution of Eq. (33) by expanding # in the
form of series

I
ha =)+ (ns) ) +0( ). (3s]
x*Inx
where function #, is given by
/’I'l) -+ %Prﬂm =0, (36)
hy(o0) = 0. (37)

Eqs. (36) and (37) are identical with Egs. (20) and (21) in
Section 3, except for the different notation. As discussed previ-
ously, the asymptotic expression for the wall temperature dis-
tribution can be found by comparing the leading-order terms
in the integral condition (32), i.e.

1

(}W(X) = m

x (Inx) + O(x 1), (38)
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Fig. 3. Graph of 0.(x) calculated from the numerical solution of
Eq. (7) (full line) and from Eq. (38) (broken line) for m = —1/2 and
Pr=1.

Fig. 3 shows, for this case m = —1/2 and Pr = 1, that the
numerical solution did not quite settle onto its asymptotic limit
as it did for the values of m > —1/2. This must arise from the
asymptotic expansions (30) and (38). which show that the ex-
pression 30 is algebraic in 1 for m < —1/2, whereas the expres-
sion (38) is only logarithmic in v for m = ~1/2. Thus, much
larger values of x will be needed to achieve the expression
(38) than to achieve the ¢xpression (30). This point will be
shown also numerically in the next section using the method
of continuous transformation proposed by Hunt and Wilks
(1981). This method allows the numerical solution of
Egs. (2) and (3) to proceed accurately to very large values of
x for any given parameter m. The advantage of this method
is that it displays the evaluation of the boundary layer between
the similarity regimes. When a prior knowledge of the final
similarity regime is available, Hunt and Wilks (1981) have
demonstrated that a continuous transformation can successful-
ly be invoked which follows closely the natural evolution of the
boundary layer flow. Accordingly. full numerical solutions of
the governing boundary layer equations may be obtained in
the context of a single transformed system of equations.

5. Continuous transformation

A x-dependency for 0 is introduced into transformation as
follows.

Without loss of generality we can prescribe

P&y = (14 & WA SO 2m) In (14 &) (40)

where

ﬁ)“{O. z<0 a1
vz = I, z20, @n
and

0 z#0
MJ*{] z=0 (42)
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Fig. 4. Variation of 0,(x), calculated from Eq. (46), with Prandtl num-
ber Pr for the case m = 0 (corresponding to a uniform wall heat flux).

are called the alternative unit-step function and the Kronecker
delta function respectively (Spanier and Oldham, 1987).
Substituting variables (39) into Egs. (2) and (3). we get

I =0, (43)
1o 1 02 1 HET ., 0f ,
— o f 2 o 28 =28 —. (44
Pr oy’ 2'/ on {2 gr,,,(é) I’ -/ 0 (44)
along with the boundary conditions
y og . L+ &)
0 =ro=o. Zo= 110
()” Fm (L)
Sy =1, g(. o) =0. (45)
The wall temperature distribution is given now by
0 (x) = x'7r, (x*)g(x, 0). (46)
10 T T T T
///
Pr =0.01 o
8 o / -
6 ]
%
4t ]
f P=1 -
2 | T .
e a P = 100 i
o bzz=o o .
0 0.2 0.4 0.6 0.8 1
2
14+ x2

Fig. 5. Variation of 0,,(x). calculated from Eq. (46), with Prandt] num-
ber Pr for the case m = —1/4 (corresponding to a uniform wall temper-
ature for large x).

7 - T T T

8y ()

(9]

Fig. 6. Variation of ,.(x), calculated from Eq. (46). with Prandt]l num-
ber Pr for the case m = —1/2.

Again a standard Keller box method can be adapted to
solve Eqgs. (43) and (44) numerically. The results for the wall
temperature distribution 0,,(x) given by Eq. (46) are presented
in Figs. 4-7 for various parameter m and Prandtl number Pr.
As maybe expected 0,(x) decreases as Pr increases, i.e. the
thermal boundary-layer becomes thinner when Pr is increased.
It is also seen from these figures that for highly conductive flu-
ids (Pr <« 1), the wall temperature 6y (x) is much higher than
for low conductive fluids {(Pr > 1).

As a check we calculated 0, (x) for the case m = —1/2. We
found that the result do appear to be approaching the asymp-
totic limit as given by Eq. (38) as x is increased.

6. Conclusion
We have considered the behaviour of the solution of the

equations for the forced convection thermal boundary-layer
on a flat plate with a prescribed heating rate proportional to

6 T v T T
e — |
St / P =0.01
r
/
/
4t/ 1
/
= 3 /
S ’}
2 -
P =1
r
1r. i
i p =100 N
0 - 1 n " n -
0 0.2 04 0.6 0.8 I
X2
1+ x2

Fig. 7. Variation of 0,.(x), calculated from Eq. (46), with Prandtl num-
ber Pr for the case m = —1.
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{1+ x*)". By solving the governing energy equation both ana-
lytically and numerically using the Keller box scheme in com-
bination with the continuous transformation method, it has
been possible to provide a detailed description of the solutions
for large x in the range m < — 1/2 and different values of the
Prandtl number Pr. In both cases m < —1/2 and m = —1/2 as-
ymptotic analysis results in an altogether simpler formulation,
giving equations whose analytical solution proves to be more
easily tractable than the original full boundary-layer equation.
Agreement between the asymptotic and numerical solutions
for the two regimes m < —1/2 and m = —1/2 proved to be
very good, leading us to believe that the asymptotic approach,
although simple in nature, was successful in capturing the es-
sential features of the heat transfer characteristics. The expo-
nent m is, therefore, observed to influence the heat transfer
characteristics significantly. A similar situation was found by
Merkin and Mahmood (1990) in their solution of the free con-
vection boundary-layer flow on a vertical flat plate.
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